Social referral programs for freemium platforms

Authors Belo, Li
Journal Management Science
Year 2022
Type Published Paper
Abstract We examine how freemium platforms can design social referral programs to encourage growth and engagement without sacrificing revenue. On the one hand, social referral programs generate new referrals from users who would not have paid for the premium features. On the other hand, they also attract new referrals from users who would have paid but prefer to invite others, resulting in more referrals but fewer paying users. We use data from a large-scale randomized field experiment in an online dating platform to assess the effects of adding referrals programs to freemium platforms and changing the referral requirements on users' behavior, namely, on their decisions to invite, pay, and engage with the platform. We find that introducing referral programs in freemium platforms can significantly contribute to increasing the number of referrals at the expense of revenue. Platforms can avoid the loss in revenue by reserving some premium features exclusively for paying users. We also find that increasing referral requirements in social referral programs can work as a double-edged sword. Increasing the referral threshold results in more referrals and higher total revenue. Yet these benefits appear to come at a cost. Users become less engaged, decreasing the value of the platform for all users. We explore two mechanisms that help to explain the differences in users' social engagement. Finally, and contrary to prior findings, we find that the quality of the referrals is not affected by the referral requirements. We discuss the theoretical and practical implications of our research.
Keywords Field experiment, freemium business models, platform strategy, referral program
URL https://pubsonline.informs.org/doi/full/10.1287/mnsc.2022.4301
Tags Archival Empirical  |   Consumer Decisions  |   Experimental / Survey-Based Empirical  |   Manager / Firm Behavior